bone & tissue days
Tehran
9 - 10 November 2016
School Of Dentistry, North Kargar, Tehran, Iran
Welcome and Introduction of Course

Dr. Allesandro Rossi / Preservation of soft and hard tissues around implants in aesthetic areas

Dr. Hossein Salehimonfared / Innovative techniques for soft tissue augmentation around dental implants

Coffee Break

Dr. Daniel Grubeanu / Predictable bone regeneration in implant dentistry

Dr. Siamak Yaghobee / Rational for using membranes

Lunch

Dr. Marko Blašković / The use of Khoury or “shell” technique with allogenic bone plate in alveolar ridge regeneration

Dr. Alireza Parhiz / Bone substitutes: Linking science with practice

Dr. Branko Trajkovski / New clinical and biomaterial perspectives for successful hard and soft tissue regeneration
bone & tissue days Tehran / Workshops

Thursday, 10th November 2016

09:00 a.m. - 09:30 a.m. Welcome and Introduction of Course

09:30 a.m. - 12:30 p.m. Practical Workshop 1: Practical Workshop 2: Practical Workshop 3:

Dr. Rossi Dr. Gruebeanu Dr. Blašković
Preservation of soft and Step-by-Step The use of Khoury or “shell”
hard tissues around Guided Bone Regeneration technique with allogenic
implants in aesthetic areas for ridge augmentation bone plate in alveolar ridge
 (Particulate grafts and membranes) regeneration

12:30 p.m. End of Course
Abstract & Speakers

Dr. Alessandro Rossi

Preservation of soft and hard tissue around implants in aesthetic areas

Dental rehabilitation of edentulous patients by means of implant-supported prostheses has presented a significant treatment alternative with relevant improvement in masticatory function and well-being of partially or completely edentulous patients. In particular, high percentages of success after implant placement may be expected when favorable local conditions of the residual bone exist. The presence or absence of soft and hard tissue between adjacent implants and between implant and teeth is of great concern in implant dentistry. In the last years the use of dental implants with new microstructure and macrostructure design, seems to improve tissues’ stability around implant. The author present his data regarding soft and hard tissue preservation using implant with a conical fixture-abutment connection and also with platform switching. In particular success and survival rate of this implant will be presented evaluating not only the radiologic parameters but also to improve in aesthetics due to the maintenance and stability of soft and hard tissue.

During the hands-on course on animal jaws, the participants will have an opportunity to practice bone grafting, adaptation of the resorbable membrane to cover the graft and suturing.

Dr. Hossein Salehimonfared

Innovative techniques for soft tissue augmentation around dental implants

Placement of dental implants in esthetic zone is a primary challenge in modern implantology. Although guided bone regeneration is an achievable method for the regeneration of bone, lack of soft tissue in the esthetic zone is an important limiting factor. On the other hand, adequate keratinized mucosa (KM) plays a pivotal role in maintaining health and esthetics in implants supported prosthesis. Decreased peri-implant inflammation, lower accumulation of microbial plaque, less recession of gingival margin and enhanced esthetics are associated with the presence of KM.

In this lecture, we present techniques with different biomaterials (autograft and allografts) that increase the width of KM and reconstruct the vestibular depth in completely edentulous patients treated with full arch implant supported prosthesis during a single surgical procedure. Moreover, a modified pedicle graft (MPG) technique is presented to obtain both purposes in patients received full arch maxillary reconstruction.

In the following, an innovated method will be introduce to augment both soft and hard tissues in a single session in aesthetic zone, using Rotated Pedicle Palatal Connective Tissue Graft (RPPCTG).

Dr. Alessandro Rossi has graduated in Odonto-Stomatology and Dental Prosthodontics, at the University of Milan, Italy with Prof. Matteo Chiapasco. / From 1997 tutor of the Department of Oral surgery and Implantology at the San Paolo Hospital, University of Milan (Head Prof. M. Chiapasco) / From 1997 Visiting Professor in dental implant rehabilitation at the School of Odonto-Stomatology at the University of Milan. / Lecturer in post-graduate courses of Oral Surgery and Implant-prosthodontic - Dental Clinic University of the study of Milano - / In 2007 he obtained the Specialty in Oral Surgery at the University of Milan. / Active Member of the Italian Society of oral surgery and Implantology (SICOI). / His clinical activity is focused on oral surgery, with particular attention to implant-prosthetic and preprosthetic surgery (post-extractive implants, immediate loading, alveo-lar ridges reconstructions using intraoral bone grafts and/or alloplastic material). / He is the author or co-author of approximately 40 papers published in international and in Italian Journals. He is co-author of some textbooks related to oral and maxillofacial surgery.

1989 - 1992 Dental implant training by European scientific teams
1989 Specialty in periodontology, Tehran University of Medical Science
1985 Dental doctorate of surgery, TUMS
2008 - 2012 Vice-chairman, department of periodontology, TUMS
1992 - present Scientific director of postgraduate education in implant surgery, Department of periodontology, TUMS
Since 1989 Assistant Professor, Department of periodontology, TUMS
2008 - 2012 Vice-chairman, department of periodontology, TUMS
Since 1992 Scientific director of postgraduate education in implant surgery, Department of periodontology, TUMS
1989 - present Assistant Professor, Department of periodontology, TUMS
Since 2002 lecturer in implantology, national, international, numerous publications
The use of autogenous bone graft (extraoral e.g. iliac crest bone graft or intraoral e.g. maxillary tuber) is still as gold standard that can be used for compensation of horizontal and vertical compromised bone situation. The disadvantages of using autogenous bone are donor side morbidity, complex surgical procedure with prolonged surgery times associated with hospitalization, higher costs, as well as personal burdens for the patients and others being involved. Luckily, there are existing procedures that can be alternatives to such demanding reconstructions instead of using autogenous transplants. These alternative procedures can be used alone or in combination with autogenous bone.

For that reason, such recent alternative methods and future perspectives will be introduced in details. Also, during the hands-on course the participants will be able to practice such methods on animal jaws:
- Step-by-Step Guided Bone Regeneration For Ridge Augmentation (Particulate Grafts And Membranes)
- Flap-Design: Principles In Esthetics and Soft Tissue Management Around Teeth and Implants
- Managing Intra- and Post-Operative Complications

Many materials and products appeared on the market as membranes since the “Guided Bone Regeneration” terminology was introduced about 40 years ago.

Until now, a lot of research has been focused on evaluation of the GBR membrane effectiveness in bone regeneration that also generated many contradictory results. Therefore, this lecture will focus on the rational of GBR and using membrane in order to create guideline for proper choice.

Professor Grubeanu graduated in dentistry in 1996 at the Johann Wolfgang Goethe University and got his PhD in the same year in the Department of Periodontology. He specialized in liable centers, among others at the department of oral and maxillofacial surgery at the University in Aachen until 2002 and was certified in Oral Surgery and Implantology in 2004. Its further development led him to research around the TMJ and to craniomandibular dysfunctions. He was finally appointed in 2014 as Professor by the Minister of Science, namely at the Medical School of the European College Fresenius. In the same year he got the Chair of the section for craniomandibular dysfunction therapy.

1985 – 1991 Undergraduate Student of Dental school of Shahid Behashti University of Medical Sciences (Tehran-Iran)
1991 DDS Degree from Dental Shool of Shahid Beheshti University of Medical Sciences
1992 - 1994 Dean Of The Dental School of The Rafsanjan University of Medical Sciences
1995 - 1998 Post-graduate Student of Periodontology Dep. of Dental School of TUMS
1999 - 2001 Assistant Prof. and Head of The Periodontics Dept. of The Dental School of Rafsanjan University of Medical Sciences
2014 - today Associated Prof. of The Periodontics Dept. of TUMS
2005 - 2008 Sectional Editor of Journal of Dentistry TUMS (in English)
2009 - today Member of Dental Implant Research Center of TUMS
2014 & 2015 Executive manager of Iranian National Board Exam
Abstract & Speakers

Dr. Marko Blaskovic

The use of “shell” technique with allogenic bone plate in alveolar ridge regeneration

The tooth loss, trauma or infection can be the reasons leading to alveolar bone defects. Also, inadequate bone volume can prevent prosthetic driven implant placement. Therefore, different bone augmentation procedures are recommended in order to correct the bone volume loss. In case the residual bone volume is inadequate for insertion of an implant with the desired dimensions, then a two-stage procedure is being indicated. Among all known augmentation techniques, the onlay bone grafting with autogenous bone block is considered to be a safe technique having very low complication rates. However, the intraorally harvested bone blocks are mainly composed of cortical bone that requires delayed vascularization/remodeling time and can potentially cause sequestration. The “shell” technique can be used to overcome such drawbacks. However, the harvesting and extraoral trimming of the autogenous bone shell is very sensitive and time-consuming technique. Therefore, the use of thin allograft bone shell (cortical plate) can significantly simplify the surgical technique as well as decrease the surgery time and morbidity.

During the hands-on course on animal jaws, the participants will have an opportunity to practice the shaping and fixation of the allograft cortical plate model, grafting of the plate/surrounding bone gap, also exercise the adaptation of resorbable membrane and soft tissue to cover the grafted site.

Dr. Alireza Parhiz

Bone Substitutes: linking science with practice

An autologous bone graft is still the ideal material for the repair of craniofacial defects, but its availability is limited and harvesting can be associated with complications. Bone replacement materials as an alternative have a long history of success. With increasing technological advances the spectrum of grafting materials has broadened to allografts, xenografts, and synthetic materials, providing material specific advantages. A large number of bone-graft substitutes are available including allograft bone preparations such as demineralized bone matrix and calcium-based materials.

Because an understanding of the properties of each material enables individual treatment concepts this review presents an overview of the principles of bone replacement, the types of graft materials available, and considers future perspectives. Bone substitutes are undergoing a change from a simple replacement material to an individually created composite biomaterial with osteoinductive properties to enable enhanced defect bridging.
Abstract & Speakers

Dr. Branko Trajkovski

New clinical and biomaterial perspectives for successful hard and soft tissue regeneration

Bone substitutes are used to supplement or replace the autogenous bone transplantation. They provide a scaffold structure and support the hard and soft tissue healing processes alone or in combination with other biomaterials such as sponges, GBR membranes and 3D soft tissue matrices. In comparison to the autologous bone grafts, the advantages of using bone substitutes are sufficient availability without additional donor site morbidity and their flexibility for indication oriented selection.

The physico-chemical properties combined with the high quality biological potential and always indication oriented bone substitutes ensure the desired clinical outcome. Their proper selection from integration, up to volume stability, degradation time, complete resorption or combination thereof is crucial for the successful treatment. Also the proper choice of membranes with optimal barrier function, or using the appropriate 3D scaffold structure supports the concepts of GBR and GTR.

This lecture talks about bridging the gap between the clinics, science and industry by offering interdisciplinary knowledge for personalized treatment in order to treat each individual patient at its best.

In addition, recent viscoelasticity, hydrophilicity and physicochemical differences in the biomaterials will be discussed. Such variations could be of crucial importance for the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration.

Branko is an experienced scientist in Molecular Biology, Biochemistry, Biomaterials and Local Drug Delivery. He has worked extensively in international and interdisciplinary research projects in the field of personalized patient treatment, bone healing and cell-biology at the Universities in Berlin (Medical University of Charité-Berlin, Free University-Berlin), Sofia University-Bulgaria and various research institutes (Julius Wolff Institute, Berlin Center for Regenerative Therapies, Institute of Biomaterial Development-Helmholtz Center, Max-Plank-Institute, Bulgarian Academy of Sciences). He has done research and has publications on implant surfaces, biomaterials, local drug delivery and bone regeneration. Currently he is involved in biomaterial development and material science research of botiss biomaterials. He is especially focused on the recent clinical and biomaterial perspectives for successful hard and soft tissue regeneration as external scientist at the Medical University of Charité-Berlin. His strength is in the broad scientific knowledge and experience, especially in the field of dental biomaterials. He is regular lecturer on local and international scientific congresses and universities on bone and tissue regeneration.

For further information, please visit: www.boneandtissue.com
Innovation.
Regeneration.
Aesthetics.

botiss biomaterials GmbH
Hauptstr. 28
15806 Zossen / Berlin
Germany

Tel.: +49 33769 / 88 41 992
Fax: +49 33769 / 88 41 993

events@botiss.com
www.botiss.com
www.facebook.com/botissdental